

R & bioinformatics tools

[Home]

Download

R Project

About R Logo Contributors What's New? Reporting Bugs Conferences Search Get Involved: Mailing Lists Developer Pages R Blog

R Foundation

Foundation Board

The R Project for Statistical Computing

Getting Started

R is a free software environment for statistical computing and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and MacOS. To **download R**, please choose your preferred CRAN mirror.

If you have questions about R like how to download and install the software, or what the license terms are, please read our answers to frequently asked questions before you send an email.

News

- R version 3.5.2 (Eggshell Igloo) prerelease versions will appear starting Monday 2018-12-10. Final release is scheduled for Thursday 2018-12-20.
- The R Foundation Conference Committee has released a call for proposals to host useRI 2020 in North America.
- · You can now support the R Foundation with a renewable subscription as a supporting member
- R version 3.5.1 (Feather Spray) has been released on 2018-07-02.
- The R Foundation has been awarded the Personality/Organization of the year 2018 award by the professional association of German market and social researchers.

Nours via Twitter

https://www.r-project.org/

Kore<u>a</u>

https://ftp.harukasan.org/CRAN/	Information and Database Systems Laboratory, Pukyong National University
https://cran.yu.ac.kr/	Yeungnam University
https://cran.seoul.go.kr/	Bigdata Campus, Seoul Metropolitan Govermment
http://healthstat.snu.ac.kr/CRAN/	Graduate School of Public Health, Seoul National University, Seoul
https://cran.biodisk.org/	The Genome Institute of UNIST (Ulsan National Institute of Science and Technology
http://cran.biodisk.org/	The Genome Institute of UNIST (Ulsan National Institute of Science and Technology
Malaysia	
https://wbc.upm.edu.my/cran/	Univerisiti Putra Malaysia
http://wbc.upm.edu.my/cran/	Univerisiti Putra Malaysia
Mexico	
https://cran.itam.mx/	Instituto Tecnologico Autonomo de Mexico
http://cran.itam.mx/	Instituto Tecnologico Autonomo de Mexico
http://www.est.colpos.mx/R-mirror/	Colegio de Postgraduados, Texcoco

The Comprehensive R Archive Network

Download and Install R
Precompiled binary distributions of the base system and contributed packages, Windows and Mac users most likely want one of these versions of R:
Download R for Linux
Download R for (Mac) OS X Download R for Windows
R is part of many Linux distributions, you should check with your Linux package management system in addition to the link above
Source Code for all Platforms
Windows and Mac users most likely want to download the precompiled binaries listed in the upper box, not the source code. The sources have to be compiled before you can use them. If you do not know what this means, you probably do not want to do it!
• The latest release (2019-07-05, Action of the Toes) <u>R-3.6.1.tar.gz</u> , read <u>what's new</u> in the latest version.
• Sources of <u>R alpha and beta releases</u> (daily snapshots, created only in time periods before a planned release).
• Daily snapshots of current patched and development versions are <u>available here</u> . Please read about <u>new features and bug fixes</u> before filing corresponding feature requests or bug reports.
Source code of older versions of R is <u>available here</u> .
Contributed extension <u>packages</u>
Questions About R
• If you have questions about R like how to download and install the software, or what the license terms are, please read our <u>answers to frequently asked</u> <u>questions</u> before you send an email.
[]

R for Windows

Subdirectories:

base	Binaries for base distribution. This is what you want to install R for the first time.
contrib	Binaries of contributed CRAN packages (for $R \ge 2.13.x$; managed by Uwe Ligges). There is also information on <u>third party software</u> available for CRAN Windows services and corresponding environment and make variables.
<u>old contrib</u>	Binaries of contributed CRAN packages for outdated versions of R (for R < 2.13.x; managed by Uwe Ligges).
<u>Rtools</u>	Tools to build R and R packages. This is what you want to build your own packages on Windows, or to build R itself.

Please do not submit binaries to CRAN. Package developers might want to contact Uwe Ligges directly in case of questions / suggestions related to Windows binaries.

You may also want to read the <u>R FAQ</u> and <u>R for Windows FAQ</u>.

Note: CRAN does some checks on these binaries for viruses, but cannot give guarantees. Use the normal precautions with downloaded executables.

Download R 3.6.1 for Windows (81 megabytes, 32/64 bit)

Installation and other instructions New features in this version

If you want to double-check that the package you have downloaded matches the package distributed by CRAN, you can compare the <u>md5sum</u> of the .exe to the <u>fingerprint</u> need a version of md5sum for windows: both <u>graphical</u> and <u>command line versions</u> are available.

Frequently asked questions

- Does R run under my version of Windows?
- How do I update packages in my previous version of R?
- Should I run 32-bit or 64-bit R?

Please see the <u>R FAQ</u> for general information about R and the <u>R Windows FAQ</u> for Windows-specific information.

Other builds

- Patches to this release are incorporated in the <u>r-patched snapshot build</u>.
- A build of the development version (which will eventually become the next major release of R) is available in the r-devel snapshot build.
- Previous releases

Note to webmasters: A stable link which will redirect to the current Windows binary release is <<u>CRAN_MIRROR>/bin/windows/base/release.htm</u>.

±≭ - R for Windows 3.5.1	
별 치할 위치 선택 어디에 R for Windows 3.5.1 울(물) 설치하시겠습니까?	R
설치 프로그램은 R for Windows 3.5.1 울(물) 다음 폴더에 설 다.	치할 것입니
계속하시려면 "다음"을 클릭하십시오. 다른 폴더를 선택하시려면, 클릭하십시오.	"찾아보기"를
C:₩R₩R-3.5.1	아보기(R)
최소 1.2 MB 의 디스크 대유 공간이 설치에 필요합니다.	
< 뒤로(8) 다음(N) :	취소

Installation of RStudio

https://www.rstudio.com/

Installation of RStudio

Installation of RStudio

Installers for Supported Platforms

Installers	Size	Date	MD5
RStudio 1.2.1335 - Windows 7+ (64-bit)	126.9 MB	2019-04-08	dDe2470f1f8ef4cd35a669aa323a2136
RStudio 1.2.1335 - Mac OS X 10.12+ (64-bit)	121.1 MB	2019-04-08	6c570b0e2144583f7c48c284ce299eef
RStudio 1.2.1335 - Ubuntu 14/Debian 8 (64-bit)	92.2 MB	2019-04-08	c1b07d0511469abfe582919b183eee83
RStudio 1.2.1335 - Ubuntu 16 (64-bit)	99.3 MB	2019-04-08	c1 42d69c21 0257fb10d1 8c045fff13c7
RStudio 1.2.1335 - Ubuntu 18/Debian 10 (64-bit)	100.4 MB	2019-04-08	71 a8d1 990c0d97939804b46cfb0aea75
RStudio 1.2.1335 - Fedora 19/RedHat 7 (64-bit)	114.1 MB	2019-04-08	296b6ef88969a91297fab6545f256a7a
RStudio 1.2.1335 - Debian 9 (64-bit)	100.6 MB	2019-04-08	1e32d4d6f6e216f086a81ca82ef65a91
RStudio 1.2.1335 - OpenSUSE 15 (64-bit)	101.6 MB	2019-04-08	2795a63c7efd8e2aa2dae86ba09a81e5
RStudio 1.2.1335 - SLES/OpenSUSE 12 (64-bit)	94.4 MB	2019-04-08	c65424b06ef6737279d982db9eefcae1

Definition of Bioinformatics

Data Visualization with ggplot2 :: CHEAT SHEET

https://github.com/rstudio/cheatsheets/blob/master/data-visualization-2.1.pdf

Definition of Bioinformatics

Stats An alternative way to build a layer

geom

data

stat

Use ..name.. syntax to map stat variables to aesthetics. geom to use 🚺 stat function 🔰 geommappings 🕽 i + stat_density2d(aes(fill = ..level..),

geom = "polygon") variable created by stat

coordinate plot

c + stat_bin(binwidth = 1, origin = 10) x, y | ...count.., ..ncount.., ..density.., ..ndensity..

c + stat_count(width = 1) x, y, | ...count.., ...prop.. c + stat_density(adjust = 1, kernel = "gaussian") x, y, | ..count.., ..density.., ..scaled..

e + stat_bin_2d(bins = 30, drop = T) x, y, fill ... count.., ... density...

e + stat_bin_hex(bins=30) x, y, fill | ...count.., ..density... e + stat_density_2d(contour = TRUE, n = 100) x, y, color, size | ..level..

e + stat_ellipse(level = 0.95, segments = 51, type = "t")

l + stat_contour(aes(z = z)) x, y, z, order | ..level. l + stat_summary_hex(aes(z = z), bins = 30, fun = max)
x, y, z, fill | ..value..

l + stat_summary_2d(aes(z = z), bins = 30, fun = mean) x, y, z, fill | ...value.

f + stat_boxplot(coef = 1.5) x, y | ..lower.., ..middle.., ..upper.., ..width.. , ..ymin.., ..ymax. f + stat_ydensity(kernel = "gaussian", scale = "area") x, y ..density.., ..scaled.., ..count.., ..n.., ..violinwidth.., ..wi

e + stat_ecdf(n = 40) x, y | ...x.., ...y.. e + stat_quantile(quantiles = c(0.1, 0.9), formula = y ~ log(x), method = "rq") x, y | ...quantile. **e + stat_smooth**(method = "lm", formula = y ~ x, se=T, level=0.95) **x**, **y** | ..se.., ..x.., ..y., ..ymin.., ..ymax..

 $\begin{array}{l} \textbf{ggplot() + stat_function(aes(x = -3:3), n = 99, fun = dnorm, args = list(sd=0.5)) x | ...x., ..y.. \end{array}$ e + stat_identity(na.rm = TRUE)

ggplot() + stat_qq(aes(sample=1:100), dist = qt, dparam=list(df=5)) sample, x, y | ...sample..., ..theoretical..

e + stat_sum() x, y, size | ..n.., ..prop.. e + stat_summary(fun.data = "mean_cl_boot") h + stat_summary_bin(fun.y = "mean", geom = "bar")

e + stat_unique()

Scales

Scales map data values to the visual values of an aesthetic. To change a mapping, add a new scale.

GENERAL PURPOSE SCALES

Use with most aesthetics

scale * continuous() - map cont' values to visual ones scale_*_discrete() - map discrete values to visual ones scale_*_identity() - use data values as visual ones

scale_*_manual(values = c()) - map discrete values to
manually chosen visual ones scale_*_date(date_labels = "%m/%d"), date_breaks = "2

weeks") - treat data values as dates. scale_*_datetime() - treat data x values as date times. Use same arguments as scale_x_date(). See ?strptime for label formats

X & Y LOCATION SCALES

Use with x or y aesthetics (x shown here) scale_x_log10() - Plot x on log10 scale scale_x_reverse() - Reverse direction of x axis

COLOR AND FILL SCALES (DISCRETE)

n + scale fill brewer(palette = "Blues")

n + scale_fill_grey(start = 0.2, end = 0.8, na.value = "red")

COLOR AND FILL SCALES (CONTINUOUS)

- o <- c + geom_dotplot(aes(fill = ..x..))</pre>
- o + scale_fill_distiller(palette = "Blues")
- o + scale_fill_gradient(low="red", high="yellow")
- o + scale_fill_gradient2(low="red", high="blue", mid = "white", midpoint = 25)

.ihi o + scale_fill_gradientn(colours=topo.colors(6)) Also: rainbow(), heat.colors(), terrain.colors(), cm.colors(), RColorBrewer::brewer.pal() .:::

SHAPE AND SIZE SCALES

.....

- p <- e + geom point(aes(shape = fl, size = cvl))</pre> p + scale_shape() + scale_size() p + scale_shape_manual(values = c(3:7))
- p + scale_radius(range = c(1,6))
- p + scale_size_area(max_size = 6)

Coordinate Systems

r <- d + geom_bar()

- r + coord_cartesian(xlim = c(0, 5)) xlim, ylim⁻ The default cartesian coordinate system . r + coord fixed(ratio = 1/2)
- ratio, xlim, ylim, Cartesian coordinates with fixed aspect ratio between x and y units
- r + coord flip() _
 - xlim, ylim Flipped Cartesian coordinates r + coord_polar(theta = "x", direction=1)
 theta, start, direction

- r + coord_trans(ytrans = "sqrt") xtrans, vtrans. limx, limy fransformed carteslan coordinates. Set xtrans and ytrans to the name of a window function.

π + coord_guickmap()

- π + coord map(projection = "ortho", orientation=c(41, -74, 0))projection, orienztation, xlim, ylim
- Map projections from the mapproj package (mercator (default), azequalarea, lagrange, etc.)

Position Adjustments

Position adjustments determine how to arrange geoms that would otherwise occupy the same space.

<- ggplot(mpg, aes(fl, fill = drv))

- s + geom_bar(position = "dodge") Arrange elements side by side
 - + geom bar(position = "fill") Stack elements on top of one another,
- e + geom_point(position = "jitter") Add random noise to X and Y position of each element to avoid overplotting
 - e + geom_label(position = "nudge") Nudge labels away from points .B

Each position adjustment can be recast as a function with manual width and height arguments s + geom_bar(position = position_dodge(width = 1))

Faceting Facets divide a plot into subplots based on the

values of one or more discrete variables. t <- ggplot(mpg, aes(cty, hwy)) + geom_point()

- t + facet_grid(cols = vars(fl))
 facet into columns based on fl
- t + facet_grid(rows = vars(year)) facet into rows based on year rows based on year
- t + facet_grid(rows = vars(year), cols = vars(fl))
 facet into both rows and columns
- t + facet_wrap(vars(fl)) wrap facets into a rectangular layout
- Set scales to let axis limits vary across facets
- t + facet_grid(rows = vars(drv), cols = vars(fl), scales = "free") x and y axis limits adjust to individual facets "free_x" - x axis limits adjust

"free_y" - y axis limits adjust

Set labeller to adjust facet labels

t + facet_grid(cols = vars(fl), labeller = label_both) fl: c fl: d fl: e fl: p fl: r

t + facet_grid(rows = vars(fl), labeller = label_bquote(alpha ^ .(fl))) $\alpha^{c} \quad \alpha^{d} \quad \alpha^{e} \quad \alpha^{p} \quad \alpha^{r}$

Labels

t + labs(x = "New x axis label", y = "New y axis label", title = "Add a title above the plot", Use scale function subtitle = "Add a subtitle below title", to update legend labels caption = "Add a caption below plot", <AES> = "New <AES> legend title") t + annotate(geom = "text", x = 8, y = 9, label = "A")

geom to place manual values for geom's aesthetics

Legends

n + theme(legend.position = "bottom") Place legend at "bottom", "top", "left", or "right"

n + guides(fill = "none") Set legend type for each aesthetic: colorbar, legend, or none (no legend)

n + scale_fill_discrete(name = "Title", labels = c("A", "B", "C", "D", "E")) Set legend title and labels with a scale function.

Zooming

- Without clipping (preferred)
- **t + coord_cartesian(** xlim = c(0, 100), ylim = c(10, 20))
- With clipping (removes unseen data points)
- t + xlim(0, 100) + ylim(10, 20)
- t + scale_x_continuous(limits = c(0, 100)) + scale_y_continuous(limits = c(0, 100))

RStudio® is a trademark of RStudio, Inc. • CC BY SA RStudio • info@rstudio.com • 844-448-1212 • rstudio.com • Learn more at http://ggplot2.tidyverse.org • ggplot2 3.1.0 • Updated: 2018-12

ggplot2 is an R package for producing statistical, or data, graphics, but it is unlike most other graphics packages because it has a deep underlying grammar. This grammar, based on the Grammar of Graphics (Wilkinson 2005), is made up of a set of independent components that can be composed in many different ways. This makes ggplot2 very powerful because you are not limited to a set of pre-specified graphics, but you can create new graphics that are precisely tailored for your problem. This may sound overwhelming, but because there is a simple set of core principles and very few special cases, ggplot2 is also easy to learn (although it may take a little time to forget your preconceptions from other graphics tools).

Grammar Defines Components of Graphics

data: in ggplot2, data must be stored as an R data frame

coordinate system: describes 2-D space that data is projected onto - for example, Cartesian coordinates, polar coordinates, map projections, ...

geoms: describe type of geometric objects that represent data - for example, points, lines, polygons, ...

aesthetics: describe visual characteristics that represent data - for example, position, size, color, shape, transparency, fill

scales: for each aesthetic, describe how visual characteristic is converted to display values - for example, log scales, color scales, size scales, shape scales, ...

stats : describe statistical transformations that typically summarize data - for example, counts, means, medians, regression lines, ...

facets: describe how data is split into subsets and displayed as multiple small graphs

Load package and mpg data

library(ggplot2) head(mpg)

#	A tibble: 6 >	x 11									
	manufacturer	model	displ	year	cy1	trans	drv	cty	hwy	f1	class
	<chr></chr>	<chr></chr>	<db1></db1>	<int></int>	<int></int>	<chr></chr>	<chr></chr>	<int></int>	<int></int>	<chr></chr>	<chr></chr>
1	audi	a4	1.8	<u>1</u> 999	4	auto(15)	f	18	29	р	compact
2	audi	a4	1.8	<u>1</u> 999	4	manual(m5)	f	21	29	p	compact
3	audi	a4	2	<u>2</u> 008	4	manual(m6)	f	20	31	p	compact
4	audi	a4	2	<u>2</u> 008	4	auto(av)	f	21	30	p	compact
5	audi	a4	2.8	<u>1</u> 999	6	auto(15)	f	16	26	p	compact
6	audi	a4	2.8	<u>1</u> 999	6	manual(m5)	f	18	26	p	compact

Change path

Files Plots Packages Help Viewer		
🎱 New Folder 🛛 Delete 📑 Rename 🏼 🌼 More 👻		G
🗆 🏠 Home		
A Name	Size	Modified
P Rhistory	285 B	Jun 7, 2019, 9:31 AM
0547750_1.pdf	918.9 KB	Oct 13, 2018, 9:49 AM
0547989_1.hwp	32 KB	Oct 13, 2018, 9:52 AM
Aco003_chi.datasize.txt	17.6 KB	Nov 8, 2018, 4:18 PM
Aco003_chi.test.datasize.txt	17.6 KB	Nov 8, 2018, 4:18 PM
EPIC.Method.pdf	538.4 KB	Jun 24, 2019, 4:34 PM
ezPDFReader2.0		
intronerate.py	13.7 KB	Nov 8, 2018, 4:26 PM
manual.1918807149.pdf	401.2 KB	Oct 14, 2018, 12:59 PM

1.클릭

Change path

Change path

mpg data

write.table(mpg,"mpg.txt",sep="₩t")

manufacturer	model	displ	year	cyl	trans	drv	cty	hwy	fl	class
audi	a4	1.8	1999	4	auto(l5)	f	18	29	р	compact
audi	a4	1.8	1999	4	manual(m5)	f	21	29	р	compact
audi	a4	2	2008	4	manual(m6)	f	20	31	р	compact
audi	a4	2	2008	4	auto(av)	f	21	30	р	compact
audi	a4	2.8	1999	6	auto(l5)	f	16	26	р	compact
audi	a4	2.8	1999	6	manual(m5)	f	18	26	р	compact
audi	a4	3.1	2008	6	auto(av)	f	18	27	р	compact
audi	a4 quattro	1.8	1999	4	manual(m5)	4	18	26	р	compact
audi	a4 quattro	1.8	1999	4	auto(l5)	4	16	25	р	compact
audi	a4 quattro	2	2008	4	manual(m6)	4	20	28	р	compact
audi	a4 quattro	2	2008	4	auto(s6)	4	19	27	р	compact
audi	a4 quattro	2.8	1999	6	auto(l5)	4	15	25	р	compact
audi	a4 quattro	2.8	1999	6	manual(m5)	4	17	25	р	compact
audi	a4 quattro	3.1	2008	6	auto(s6)	4	17	25	р	compact

Data information

summary(mpg)

manufacturer	model	displ Min. :1.600	year О Min. :1999	cyl Min. :4.000	trans Length:234
Class :character	Class :character	1st Qu.:2.400	0 1st Qu.:1999	1st Qu.:4.000	Class :character
Mode .character	Mode .character	Mean :3.472	2 Mean :2004	Mean :5.889	Mode .character
		3rd Qu.:4.600 Max. :7.000	0 3rd Qu.:2008 0 Max. :2008	3rd Qu.:8.000 Max. :8.000	
drv	cty	hwy	f1	class	
Length:234	Min. : 9.00	Min. :12.00	Length:234	Length:234	
Class :character	1st Qu.:14.00	1st Qu.:18.00	Class :character	Class :charact	er
Mode :character	Median :17.00	Median :24.00	Mode :character	Mode :charact	er
	Mean :16.86	Mean :23.44			
	3rd Qu.:19.00	3rd Qu.:27.00			
	Max. :35.00	Max. :44.00			

model - 모델	drv - 구동 방식
displ - 배기량	cty - 도시 연비
year - 생산연도	hwy - 고속도로 연비
cyl - 실린더 개수	fl - 연료 종류
· trans - 변속기 종류	class - 자동차 종류

ggplot(dataset, aes(x = x_data, y= y_data, color = color_gruop))
ggplot(mtcars, aes(x = wt))
ggplot(mtcars, aes(x = wt, y = mpg))
ggplot(mtcars, aes(x = wt, y = mpg))

- aes(aesthetics) = 미학요소
- ggplot2에서는 색상, 크기, 모양, 채우기 등과 함께 플롯의 X 축과 Y 축을 미학으로 간주

- Layer = '기하 구조(geoms)
- 기본 설정 후 기하 구조를 다른 구성 위에 추가 할 수 있으며, 이러한 추가 는 '+' 기호를 사용함. 해당 링크에는 사용 가능한 모든 기하 구조의 목록 이 있습니다. (Layers: geoms 참조)
- display the data allows viewer to see patterns, overall structure, local structure, outliers, ...
- display statistical summaries of the data allows viewer to see counts, means, medians, IQRs, model predictions, ...

geom_xxx() – ggplot2

```
"Line specified by slope and intercept."
"geom abline"
"geom area"
                  "Area plot."
"geom bar"
                  "Bars, rectangles with bases on x-axis"
"geom bin2d"
                  "Add heatmap of 2d bin counts."
"geom blank"
                  "Blank, draws nothing."
                  "Box and whiskers plot."
"geom boxplot"
"geom contour"
                  "Display contours of a 3d surface in 2d."
"geom crossbar"
                  "Hollow bar with middle indicated by horizontal line."
"geom density"
                  "Display a smooth density estimate."
"geom density2d"
                  "Contours from a 2d density estimate."
"geom dotplot"
                  "Dot plot"
                  "Error bars."
"geom errorbar"
                  "Horizontal error bars"
"geom errorbarh"
"geom freqpoly"
                  "Frequency polygon."
"geom hex"
                  "Hexagon bining."
"geom histogram" "Histogram"
"geom hline"
                  "Horizontal line."
"geom jitter"
                  "Points, jittered to reduce overplotting."
"geom line"
                  "Connect observations, ordered by x value."
"geom linerange"
                  "An interval represented by a vertical line."
"geom map"
                  "Polygons from a reference map."
"geom path"
                  "Connect observations in original order"
"geom point"
                  "Points, as for a scatterplot"
"geom pointrange" "An interval represented by a vertical line, with a point in the middle."
                  "Polygon, a filled path."
"geom polygon"
"geom quantile"
                  "Add guantile lines from a guantile regression."
"geom raster"
                  "High-performance rectangular tiling."
"geom rect"
                  "2d rectangles."
"geom ribbon"
                  "Ribbons, y range with continuous x values."
"geom rug"
                  "Marginal rug plots."
"geom segment"
                  "Single line segments."
"geom smooth"
                  "Add a smoothed conditional mean."
"geom step"
                  "Connect observations by stairs."
                  "Textual annotations."
"geom text"
"geom tile"
                  "Tile plane with rectangles."
"geom violin"
                  "Violin plot."
"geom vline"
                  "Line, vertical."
```

BMS

Individual geoms – ggplot2

2 -

0 -

Т.

1

2

' 3 5

4

4

3 -

2-

T.

2

3

Δ

4.

3-

2

1

2

3

4

5

https://opr.princeton.edu/workshops/Downloads/2015Jan_ggplot2Koffman.pdf

5

4 -

3 -

2

1

2

5

4

3

```
p <- ggplot(mpg, aes(displ, cty, label = model)) + labs(x = NULL, y =
NULL) + theme(plot.title = element_text(size = 12))
```

- p + geom_point() + ggtitle("point")
- p + geom_text() + ggtitle("text")
- p + geom_tile() + ggtitle("raster")
- p + geom_tile() + ggtitle("raster")
- p + geom_line() + ggtitle("line")
- p + geom_area() + ggtitle("area")
- p + geom_path() + ggtitle("path")
- p + geom_polygon() + ggtitle("polygon")

Collective geoms – ggplot2

ggplot(data, aes(x, y)) + geom_point()
+ geom_line()

ggplot(data, aes(x, y)) + geom_boxplot()
+ geom_line(aes(group = group),
colour = "#3366FF", alpha = 0.5)

```
ggplot(data, aes(x, fill = fill_group)) +
geom_bar()
```


ggplot(mpg, aes(cty, displ, group = manufacturer)) + geom_point() + geom_line()

```
ggplot(mpg, aes(class, cty))+ geom_boxplot() + geom_line( aes(group = cty), colour = "#3366FF", alpha = 0.5)
```

ggplot(mpg, aes(class, fill = drv)) + geom_bar()

stat_xxx() - ggplot2

"stat_abline"	"Add a line with slope and intercept."
"stat bin"	"Bin data."
"stat_bin2d"	"Count number of observation in rectangular bins."
"stat_bindot"	"Bin data for dot plot."
"stat_binhex"	"Bin 2d plane into hexagons."
"stat_boxplot"	"Calculate components of box and whisker plot."
"stat_contour"	"Calculate contours of 3d data."
"stat_density"	"1d kernel density estimate."
"stat_density2d"	"2d density estimation."
"stat_ecdf"	"Empirical Cumulative Density Function"
"stat_function"	"Superimpose a function."
"stat_hline"	"Add a horizontal line"
"stat_identity"	"Identity statistic."
"stat_qq"	"Calculation for quantile-quantile plot."
"stat_quantile"	"Continuous quantiles."
"stat_smooth"	"Add a smoother."
"stat_spoke"	"Convert angle and radius to xend and yend."
"stat_sum"	"Sum unique values. Useful for overplotting on scatterplots."
"stat_summary"	"Summarise y values at every unique x."
"stat_summary2d"	"Apply funciton for 2D rectangular bins."
"stat_summary_hex"	"Apply funciton for 2D hexagonal bins."
"stat_unique"	"Remove duplicates."
"stat_vline"	"Add a vertical line"
"stat_ydensity"	"1d kernel density estimate along y axis, for violin plot."

Statistical Transformation – ggplot2

- p <- ggplot(mpg, aes(x=cty))</pre>
- p + stat_bin()

p + stat_bin(geom="tile")

Change Default Geometric Object – ggplot2

```
p <- ggplot(mpg, aes(x=cty))
#figure1</pre>
```

p + stat_bin()

#figure2

```
p + stat_bin(geom="point", binwidth=1)
#figure3
```

```
p + stat_bin(geom="line", binwidth=1)
```

#figure4

```
p + stat_bin(geom="line",binwidth=1) +
stat_bin(geom="point",binwidth=1)
```


Use Variables Created by stat_xxx() – ggplot2

- p <- ggplot(mpg, aes(x=cty))</pre>
- p + stat_bin(aes(fill=..count..))

Add or Remove Aesthetic Mapping– ggplot2

- Describe visual characteristics that represent data
 - for example, x position, y position, size, color (outside), fill (inside), point shape, line type, transparency
- Each layer inherits default aesthetics from plot object
 - · within each layer, aesthetics may added, overwritten, or removed
- p <- ggplot(mpg, aes(x=displ, y=cty, color=manufacturer))</pre>
- p + geom_point() + geom_smooth(method="lm", se=FALSE) #fig1
- p + geom_point(aes(shape=manufacturer)) + geom_smooth(method="lm",se=FALSE) #fig2
- p + geom_point(aes(color=NULL)) + geom_smooth(method="lm",se=FALSE) #fig3

Aesthetic Mapping vs. Parameter Setting – ggplot2

- aesthetic mapping
 - data value determines visual characteristic use aes()
- Setting
 - constant value determines visual characteristic use layer parameter
- p <- ggplot(mpg, aes(x=displ, y=cty))
- p + geom_point(aes(color=manufacturer))
- p + geom_point(color="red")

Position – ggplot2

- p <- ggplot(mpg, aes(x=manufacturer, fill=class))</pre>
- p + geom_bar() #figure1
- p + geom_bar(position="stack") #figure2
- p + geom_bar(position="dodge") #figure3
- p + geom_bar(position="fill") #figure4

Bar Width – ggplot2

- p <- ggplot(mpg, aes(x=manufacturer))</pre>
- p + geom_bar()
- p + geom_bar(width=.5)
- p + geom_bar(width=.3)

ford

honda hyundai

jeep

land rover

manufacturer

lincoln

mercury

nissan

pontiac subaru

toyota volkswagen

10 -

audi chevrolet dodge

Coordinate System – ggplot2

```
p <- ggplot(mpg, aes(x=factor(1),
fill=manufacturer))
```

#figure1

```
p + geom_bar()
```

#figure2

```
p + geom_bar() + coord_flip()
```

#figure3

```
p + geom_bar() + coord_polar(theta="y")
```

#figure4

```
p + geom_bar() + coord_polar(theta="y",
direction=-1)
```


Fill Scales – ggplot2

- p <- ggplot(mpg, aes(x=manufacturer, fill=class))</pre>
- p + geom_bar(color="black") #figure1
- p + geom_bar(color="black") + scale_fill_grey() #figure2
- p + geom_bar(color="black") + scale_fill_brewer() #figure3

library(RColorBrewer)

p + geom_bar(color="black") + scale_fill_brewer(palette="Set1") #figure4

Theme – ggplot2

- Theme is non-data elements and
- Theme does not affect how data is displayed by geom_xxx() or stat_xxx() functions
- addition/modification/deletion of titles, axis labels, tick marks, axis tick labels and legends

https://opr.princeton.edu/workshops/Downloads/2015Jan_ggplot2Koffman.pdf

Theme: Titles, Tick Marks, and Tick Labels – ggplot2

```
theme(title=element_text(color="blue", size=30),
    axis.title=element_text(size=14,face="bold"),
    axis.title.x=element_text(color="green"),
    axis.text=element_text(size=14),
    axis.text.y=element_text(color="black"),
    axis.text.x=element_text(color="black"),
    axis.text.x=element_text(color="purple"),
    axis.ticks.y=element_blank())
```

Life Expectancy and TFR

Theme: Legends – ggplot2

Area: ◇ Africa ◆ Americas △ Asia/Oceania 米 Europe

```
p + geom_bar() +
scale_fill_manual(name="TFR value",
    values = c("red","blue"),
    labels=c("<=2", ">2")) +
theme(legend.position="left",
    legend.text.align=1)
```

```
p + geom_point(aes(x=le, y=tfr,
    shape=area, fill=NULL), size = 3) +
    xlab("life expectancy") +
    scale_shape_manual(name="Area: ",
    values=c(1,16,2,8)) +
    theme(legend.key=element_blank(),
    legend.direction="horizontal",
    legend.position="bottom")
```

Theme: Overall Look– ggplot2

р +

geom_point() + theme_classic() p + geom_point() + theme_minimal()

Theme: Overall Look– ggplot2

р +

geom_point() + theme_classic() p + geom_point() + theme_minimal()

Genome browser

Genome browser

Genomes [hide]

great apes	human, baboon, bonobo, chimp, gibbon, gorilla, orangutan
non-ape primates	bushbaby, marmoset, mouse lemur, rhesus macaque, squirrel monkey, tarsier, tree shrew
non-primate mammals	mouse, alpaca, armadillo, cat, Chinese hamster, cow, dog, dolphin, elephant, ferret, guinea pig, hedgehog, horse, kangaroo rat, manatee, Minke whale, naked mole-rat, opossum, panda, pig, pika, platypus, rabbit, rat, rock hyrax, sheep, shrew, sloth, squirrel, Tasmanian devil, tenrec, wallaby, white rhinoceros
non-mammal chordates	American alligator, Atlantic cod, budgerigar, chicken, coelacanth, elephant shark, Fugu, lamprey, lizard, medaka, medium ground finch, Nile tilapia, painted turtle, stickleback, Tetraodon, turkey, <i>Xenopus tropicalis</i> , zebra finch, zebrafish
invertebrates	<i>Caenorhabditis</i> spp (5), <i>Drosophila</i> spp. (11), Ebola virus, honey bee, lancelet, mosquito, <i>P. Pacificus</i> , sea hare, sea squirt, sea urchin, yeast

Available information - Genome browser

track search default tracks	default order hide	all add custom tracks	track hubs configure r	nulti-region reverse	resize refresh
collapse all	Use drop-dow Tracks with lots o	vn controls below and of items will automatic	l press refresh to alter to ally be displayed in mo	acks displayed. re compact modes	expand all
-		Mapping and Sequ	uencing		refresh
Base Position	P12 Fix Patches	P12 Alt Haplotypes	P12 Assembly	<u>Centromeres</u>	P12 Chromosome Band
(dense 🗘	pack 🛟	dense 🛟	hide 🛟	hide 🗘	hide 🗘
Clone Ends	● <u>FISH Clones</u>	P12 <u>Gap</u> hide \$	P12 <u>GC Percent</u>	GRC Contigs	GRC Incident
Hg19 Diff hide +	P12 INSDC	LRG Regions	<u>Mappability</u> (hide ♦)	P12 <u>RefSeq Acc</u>	Restr Enzymes
Scaffolds	Short Match	STS Markers			
linde t					
-		Genes and Gene Pr	edictions		refresh
P12 <u>GENCODE v29</u> pack \$	NCBI RefSeq	Genes and Gene Pr P12 Other RefSeq hide \$	edictions P12 Updated <u>All</u> <u>GENCODE</u> (hide +)	P12 AUGUSTUS	refresh CCDS hide +
P12 GENCODE v29 pack + Geneid Genes hide +	NCBI RefSeq pack P12 Genscan Genes hide	Genes and Gene Pr P12 Other RefSeq hide IKMC Genes Mapped hide	edictions P12 Updated All GENCODE hide \$ LRG Transcripts hide \$	P12 AUGUSTUS hide MANE select v0.5 hide	CCDS hide P12 MGC Genes hide
P12 GENCODE v29 pack Geneid Genes hide Non-coding RNA hide	NCBI RefSeq pack + P12 Genscan Genes hide + Old UCSC Genes hide +	Genes and Gene Pr P12 Other RefSeq hide IKMC Genes Mapped hide P12 ORFeome Clones hide	edictions P12 Updated All GENCODE (hide \$) LRG Transcripts (hide \$) P12 Pfam in UCSC Gene (hide \$)	P12 AUGUSTUS hide MANE select v0.5 hide RetroGenes V9 hide	refresh CCDS hide ↔ P12 MGC Genes hide ↔ SGP Genes hide ↔

Add custom tracks - Genome browser

Add Cust	tom Tra	cks				
clade Ma	ımmal	٥	genome	Human	assem	embly Dec. 2013 (GRCh38/hg38)

Display your own data as custom annotation tracks in the browser. Data must be formatted in <u>bigBed</u>, <u>bigBarChart</u>, <u>bigChain</u>, <u>bigGenePred</u>, <u>bigInteract</u>, <u>bigMaf</u>, <u>bigPsl</u>, <u>bigWig</u>, <u>BAM</u>, <u>barChart</u>, <u>VCF</u>, <u>BED</u>, <u>BED</u> detail, <u>bedGraph</u>, <u>broadPeak</u>, <u>CRAM</u>, <u>GFF</u>, <u>GTF</u>, <u>interact</u>, <u>MAF</u>, <u>narrowPeak</u>, <u>Personal Genome SNP</u>, <u>PSL</u>, or <u>WIG</u> formats. To configure the display, set <u>track</u> and <u>browser</u> line attributes as described in the <u>User's Guide</u>. Data in the bigBed, bigWig, bigGenePred, BAM and VCF formats can be provided via only a URL or embedded in a track line in the box below. Examples are <u>here</u>. If you do not have web-accessible data storage available, please see the <u>Hosting</u> section of the Track Hub Help documentation.

Please note a much more efficient way to load data is to use Track Hubs, which are loaded from the Track Hubs Portal found in the menu under My Data.

Paste URLs or data:	Or upload: 파일 선택 선택한 파일 없음	Submit
		Clear
Optional track documenta	tion: Or upload: 파일 선택 선택한 파일 없음	
		Clear

In-Slico PCR - Genome browser

r Genomes Genome	e Browser Tools	Mirrors Downloads	My Data	Projects H	Help Abou	ıt Us
UCSC In-Silico PCR						
Genome: Human	Assembl Dec. 2013 (GRCh38	y: Tary (hg38) I genome as	get:	Forward Prin	ner:	Reverse Primer:
Max Product Size: 400	00 N	Iin Perfect Match: 15	Mir	n Good Match:	15	Flip Reverse Primer:

About In-Silico PCR

In-Silico PCR searches a sequence database with a pair of PCR primers, using an indexing strategy for fast performance. See an example <u>video</u> on our YouTube channel.

Configuration Options

Genome and Assembly - The sequence database to search.
Target - If available, choose to query transcribed sequences.
Forward Primer - Must be at least 15 bases in length.
Reverse Primer - On the opposite strand from the forward primer. Minimum length of 15 bases.
Max Product Size - Maximum size of amplified region.
Min Perfect Match - Number of bases that match exactly on 3' end of primers. Minimum match size is 15.
Min Good Match - Number of bases on 3' end of primers where at least 2 out of 3 bases match.
Flip Reverse Primer - Invert the sequence order of the reverse primer and complement it.

Human hg19	Chr2	chr2:7,822,553-10	0,433,688 Go 👚 ·	🔹 🕨 🖗 🔲 🛪 🖵	
	p25.1 p24.1 p23.1 p21	p162 p15 p13.2 p11.2	e q11.2 q13 q14.3 q21	.3 q22.3 q24.1 q31.1 q32	2.1 q33.1 q34 q36.1 q37.1
	8,000 kb 	1	2,589 kb 9,000 kb 		10,000 kb
RefSeq Genes	-	→	- KIDINS220	→ ++ +++++++++++++++++++++++++++++++++	₽₩₽₽₩₽₽₽₩₩ ₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩₩

- Path /var2/users/Practice/IGV
- Files
 - H1.Myc.bed
 - H1.Nanog.bed
 - GSM438363_UCSD.IMR90.mRNA-Seq.mRNA-seq_imr90_r1.wig

DAVID

DAVID is a tool for Gene ontology analysis to understand biological meaning behind interest gene list

Insert gene list - DAVID

1.유전자 리스트 삽입

Gene ontology - DAVID

Annotation Sun	nmar	y Re	esults			
						Help and Tool Manual
Current Gene List: der	nolist1			145 DAVID IDs		
Current Background:	Homo sa	apien	S	Check Defaults 🔽	Clear All	
Disease (1 selected)						
 Functional_Categories Gene_Ontology (3 selection) 	s (3 selecte ted)	:d)				
GOTERM_BP_1	91.7%	133	Chart			
GOTERM_BP_2	91.7%	133	Chart			
GOTERM_BP_3	91.7%	133	Chart			
GOTERM_BP_4	91.7%	133	Chart			
GOTERM_BP_5	89.0%	129	Chart			
GOTERM_BP_ALL	91.7%	133	Chart			
GOTERM_BP_DIRECT	91.7%	133	Chart			
GOTERM_BP_FAT	91.7%	133	Chart			
GOTERM_CC_1	92.4%	134	Chart			
GOTERM_CC_2	91.0%	132	Chart			
GOTERM_CC_3	91.0%	132	Chart			
GOTERM_CC_4	86.9%	126	Chart			
GOTERM_CC_5	82.8%	120	Chart			_
GOTERM_CC_ALL	92.4%	134	Chart			
GOTERM_CC_DIRECT	92.4%	134	Chart			
GOTERM_CC_FAT	86.9%	126	Chart			
GOTERM_MF_1	87.6%	127	Chart			
GOTERM_MF_2	86.9%	126	Chart			

Biological process - DAVID

Sublist	Category :	term	¢ RT	Genes	Count	<u>%</u>	P-Value	<u>Benjamini</u> ≑
	GOTERM_BP_3	disruption of cells of other organism	<u>RT</u>		7	4.8	1.1E-7	7.9E-5
	GOTERM_BP_3	response to fungus	<u>RT</u>	-	7	4.8	3.7E-6	1.3E-3
	GOTERM_BP_3	regulation of cell death	RT		29	20.0	1.6E-5	3.7E-3
	GOTERM_BP_3	negative regulation of cell death	<u>RT</u>		21	14.5	2.6E-5	4.5E-3
	GOTERM_BP_3	response to bacterium	RT		16	11.0	2.7E-5	3.8E-3
	GOTERM_BP_3	modification of morphology or physiology of other organism	<u>RT</u>	-	8	5.5	3.0E-5	3.5E-3
	GOTERM_BP_3	positive regulation of response to stimulus	RT		34	23.4	3.7E-5	3.7E-3
	GOTERM_BP_3	regulation of cell proliferation	<u>RT</u>		28	19.3	7.2E-5	6.3E-3
	GOTERM_BP_3	antimicrobial humoral response	RT		6	4.1	1.1E-4	8.6E-3
	GOTERM_BP_3	defense response	RT		27	18.6	1.3E-4	9.1E-3
	GOTERM_BP_3	humoral immune response	RT		10	6.9	1.6E-4	1.0E-2
	GOTERM_BP_3	response to external biotic stimulus	<u>RT</u>		18	12.4	3.0E-4	1.7E-2
	GOTERM_BP_3	response to drug	RT		12	8.3	4.3E-4	2.3E-2
	GOTERM_BP_3	positive regulation of signaling	RT	_	26	17.9	5.1E-4	2.5E-2
	COTEDM DD A	defense verseere to other oversions	DT		10	~ ^		0.05.0

Structure of gene ontology - DAVID

BMS Bio-Medical Science Co., Ltd.

KEGG pathway - DAVID

Sublist	Category :	term	🔷 RT	Genes	<u>Count</u> :	\$ <u>%</u>	P-Value	<mark>≑ <u>Benjamini</u> ¢</mark>
	KEGG_PATHWAY	Pathways in cancer	<u>RT</u>		10	6.9	1.1E-2	8.6E-1
	KEGG_PATHWAY	Transcriptional misregulation in cancer	<u>RT</u>	=	6	4.1	2.0E-2	8.3E-1
	KEGG_PATHWAY	Calcium signaling pathway	<u>RT</u>		6	4.1	2.7E-2	7.9E-1
	KEGG_PATHWAY	MAPK signaling pathway	<u>RT</u>	=	7	4.8	3.2E-2	7.5E-1
	KEGG_PATHWAY	Signaling pathways regulating pluripotency of stem cells	<u>RT</u>		5	3.4	4.3E-2	7.8E-1
	KEGG_PATHWAY	Small cell lung cancer	<u>RT</u>	=	4	2.8	4.6E-2	7.5E-1
	KEGG_PATHWAY	Prostate cancer	<u>RT</u>		4	2.8	5.0E-2	7.2E-1
	KEGG_PATHWAY	HIF-1 signaling pathway	<u>RT</u>	=	4	2.8	6.2E-2	7.5E-1
	KEGG_PATHWAY	Amyotrophic lateral sclerosis (ALS)	<u>RT</u>		3	2.1	8.1E-2	8.1E-1
	KEGG_PATHWAY	Endometrial cancer	<u>RT</u>	=	3	2.1	8.6E-2	7.9E-1
	KEGG_PATHWAY	Basal cell carcinoma	RT		3	2.1	9.2E-2	7.8E-1

KEGG pathway - **DAVID**

Pathways (3 selected)			
BBID	4.8%	7	Chart
BIOCARTA	17.9%	26	Chart
C_NUMBER	24.1%	35	Chart
KEGG_PATHWAY	45.5%	66	Chart
REACTOME_PATHWAY	61.4%	89	Chart

Protein Domains (2 colocted)

KEGG pathway - **DAVID**

https://opr.princeton.edu/workshops/Downloads/2015Jan_ggplot2Koffman.pdf

THANK YOU.

